LeetCode: Stacks

Table Of Content
Stack Intro
- Stack Application: Tracking Nested or Hierarchical Structures
- Stack Application: Backtracking by Tracking History or State
- Stack Application: Monotonic Property Maintenance
- Stack Application: Simulating Recursion or Call Stacks
- Stack Application: Expression Evaluation and Parsing
- Stack Application: Partitioning
Stack Intro
Leetcode problems with elegant solutions using stacks.
Stack Application: Tracking Nested or Hierarchical Structures
We can track structure while iterating over an object ensuring it maintains some criteria
Ex: Validate if a s tring containing brackets ()[] is properly balanced:
def balancedParentheses(s: str) -> bool:
stack = []
pairs = {')': '(', ']': '[', '}': '{'}
for char in s:
if char in pairs.values():
stack.append(char)
elif char in pairs:
if not stack or stack.pop() != pairs[char]:
return False
return not stack
Stack Application: Backtracking by Tracking History or State
We can use stacks in backtracking to store the state of exploration. When a branch reaches a dead end or a solution, we pop the state to return to the previous state and continue exploring other branches.
Ex: Subset Sum with Backtracking
def subset_sum(nums, target):
stack = [(0, [], 0)] # (index, current_subset, current_sum)
result = []
while stack:
index, current_subset, current_sum = stack.pop()
if current_sum > target: # Prune invalid paths
continue
if current_sum == target: # Valid solution
result.append(list(current_subset))
continue
# Push new states for further exploration
for i in range(index, len(nums)):
stack.append((i + 1, current_subset + [nums[i]], current_sum + nums[i]))
return result
# subset_sum([2, 3, 6, 7], 7) = [[7]]
Stack Application: Monotonic Property Maintenance
A stack can maintain a monotonic property (increasing or decreasing) over a sequence while processing elements, ensuring efficient lookups or modifications.
Ex: Find the Next Greater Element
def nextGreaterElement(nums):
stack = [] # Stores indices of elements in decreasing order
result = [-1] * len(nums) # Initialize result with -1
for i in range(len(nums)):
while stack and nums[i] > nums[stack[-1]]:
idx = stack.pop()
result[idx] = nums[i] # Found the next greater element
stack.append(i)
return result
# Example: nextGreaterElement([2, 1, 2, 4, 3]) -> [4, 2, 4, -1, -1]
Stack Application: Simulating Recursion or Call Stacks
We can use a stack to emulate recursion by explicitly managing the call stack.
Ex: Traverse a binary tree in preorder (root -> left -> right):
def preorderTraversal(root):
if not root:
return []
stack = [root] # Start with the root node
result = []
while stack:
node = stack.pop() # Simulate recursion by processing the top of the stack
if node:
result.append(node.val) # Visit the node
# Push right child first so the left child is processed next
if node.right:
stack.append(node.right)
if node.left:
stack.append(node.left)
return result
# Example: For a tree with root → 1, left → 2, right → 3, preorderTraversal(root) -> [1, 2, 3]
Stack Application: Expression Evaluation and Parsing
We can use a stack to evaluate or parse expressions by storing operands and incrementally applying operators. This approach is well-suited for postfix and prefix notations.
Ex: Post and Prefix
def evaluatePostfix(expression):
stack = [] # To hold operands during evaluation
for token in expression.split():
if token.isdigit(): # If it's an operand, push it to the stack
stack.append(int(token))
else: # If it's an operator, pop two operands and apply the operator
b = stack.pop()
a = stack.pop()
if token == '+':
stack.append(a + b)
elif token == '-':
stack.append(a - b)
elif token == '*':
stack.append(a * b)
elif token == '/': # Assuming integer division
stack.append(a // b)
return stack.pop() # Final result is the only item left in the stack
# Example:
# Input: "3 4 + 2 * 1 +"
# Output: 15 (Equivalent to (3 + 4) * 2 + 1)
Stack Application: Partitioning
We can use a stack to partition or segment a sequence into meaningful parts by tracking boundaries or "cut points" as we iterate through the input.
Ex: Given an array, partition it into the minimum number of strictly increasing subsequences
def min_partitions(nums):
stacks = [] # Each element represents the last number in a subsequence
for num in nums:
placed = False
for i in range(len(stacks)):
# If we can append to subsequence i
if stacks[i] < num:
stacks[i] = num
placed = True
break
if not placed:
# Start a new subsequence (partition)
stacks.append(num)
return len(stacks)
# Example usage:
nums = [1, 3, 2, 4, 6, 5]
print(min_partitions(nums)) # Output: 2
20. Valid Parentheses - Easy
Topics: String, Stack
Intro
Given a string s containing: ( ) [ ] { }, determine if the input string is valid. An input string is valid if: 1. Open brackets must be closed by the same type of brackets 2. Open brackets must be closed in the correct order. 3. Every close bracket has a corresponding open bracket of the same type.
Input | Output |
---|---|
"()" | true |
"()" | false |
"(]" | true |
"([])" | true |
Constraints:
1 ≤ s.length ≤ 104
s consists of parentheses only '()[]'
Abstract
We need to validate that every open parenthesis has a matching close in the correct order.
Space & Time Complexity
Solution | Time Complexity | Space Complexity | Time Remark | Space Remark |
---|---|---|---|---|
Brute Force (replace with empty) | ||||
Stack (redundant operations) | ||||
Stack |
Brute Force: (replace with empty)
def isValid(self, s: str) -> bool:
# note: in python, an empty string "" is falsy evaluating to false
# not "" -> true
# time complexity: iterate over string of n length O(n)
# each iterate removes at least one pair, and there are at most n/2 pairs so O(n/2) iterations O(n/2)
# O(n) * O(n/2) = O(n^2)
while '()' in s or '{}' in s or '[]' in s:
s = s.replace('()', '').replace('{}', '').replace('[]', '')
# overall: time complexity O(n^2)
# overall: space complexity O(1)
return not s
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Iterate over string | O(n) | O(1) | ||
Total Iterations | O(n/2) | O(1) | ||
Overall | O(n2) | O(1) |
Find the Bug: (Hashmap)
def isValid(self, s: str) -> bool:
# time complexity: constant hashmap of 3 length O(1)
counts = {"(": 0, "[": 0, "{": 0}
closing = {")": "(", "]": "[", "}": "{"}
# time complexity: iterate over string of n length O(n)
for c in s:
# Count opening brackets
# time complexity: lookup operation in constant O(1)
if c in counts:
counts[c] += 1
# Count closing brackets
# time complexity: lookup operation in constant O(1)
else c in closing:
closingMatch = closing[c]
# No matching opening bracket
if counts[closingMatch] == 0:
return False
# Matching opening bracket
counts[closingMatch] -= 1
# INCORRECT: hashmap open value may be 0, but did not take into
# consideration whether they were in the correct order
# time complexity: iterate over hashmap of 3 length O(1)
for count in counts.values():
if count != 0:
return False
# overall: time complexity O(n)
# overall: space complexity O(1)
return True
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Iterate | ||||
Verify | ||||
Overall |
Solution 1: Stack (redundant operations)
def isValid(self, s: str) -> bool:
# note: in python, an empty list [] is falsy evaluating to false
# not [] -> true
# space complexity:
stack = []
# time complexity:
for c in s:
# add opening parenthesis
if c in '([{':
stack.append(c)
# validate closing parenthesis
elif c in ')]}':
if not stack or (c == ')' and stack[-1] != '(') or \
(c == '}' and stack[-1] != '{') or \
(c == ']' and stack[-1] != '['):
return False
stack.pop()
# overall: time complexity
# overall: space complexity
return not stack
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Solution 2: Stack
def isValid(self, s: str) -> bool:
# space complexity:
stack = []
mapping = {')': '(', '}': '{', ']': '['}
# time complexity: iterate over list of n length O(n)
for c in s:
# validate closing parenthesis
if c in mapping:
# pop top element if stack is non-empty
topElem = stack.pop() if stack else '#'
if mapping[c] != topElem:
return False
# append opening bracket
else:
stack.append(c)
# overall: time complexity
# overall: space complexity
return not stack
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
155. Min Stack - Medium
Topics: Stack, Design
Intro
Design a stack that supports push, pop, top, and retrieving the minimum element in constant time. Implement the MinStack class: MinStack() initializes the stack object. void push(int val) pushes the element val onto the stack. void pop() removes the element on the top of the stack. int top() gets the top element of the stack. int getMin() retrieves the minimum element in the stack. You must implement a solution with O(1) time complexity for each function.
Input | Output |
---|---|
["MinStack","push","push","push","getMin","pop","top","getMin"] [[],[-2],[0],[-3],[],[],[],[]] | [null,null,null,null,-3,null,0,-2] |
Constraints:
-231 ≤ val ≤ 231 - 1
Methods pop, top and getMin operations will always be called on non-empty stacks.
At most 3 * 104 calls will be made to push, pop, top, and getMin.
Abstract
We need to design a stack that runs in O(1) time complexity for each main function.
Space & Time Complexity
Solution | Time Complexity | Space Complexity | Time Remark | Space Remark |
---|---|---|---|---|
Brute Force:
def __init__(self):
# tracking logical size vs physical size
# space complexity: stores all n elements O(n)
self.stack = []
self.size = 0
def push(self, val: int) -> None:
# time complexity: append operation in constant O(1)
# size = 1 vs [5, _, _]
# logical size vs physical size ->
# stack will only grow when absolutely necessary / avoids unnecessary resizing
if self.size < len(self.stack):
# self.size == length, so append at self.size
self.stack[self.size] = val
else:
# stack needs to grow
self.stack.append(val)
# increases logical size
self.size += 1
def pop(self) -> None:
if self.size == 0:
raise IndexError("Pop from empty stack")
# size = 2 [5, 4]
# size = 1 [5, 4]
# logical size vs physical size ->
# time complexity: pop operation in constant O(1)
# decreases logical size
self.size -= 1
def top(self) -> int:
if self.size == 0:
raise IndexError("Stack is empty")
# time complexity: index top element in constant O(1)
return self.stack[self.size - 1]
def getMin(self) -> int:
if self.size == 0:
raise IndexError("Stack is empty")
minVal = float('inf')
# stack is not minSorted
# time complexity: iterate over entire stack n length O(n)
for i in range(self.size):
if self.stack[i] < minVal:
min = self.stack[i]
return minVal
# overall: time complexity O(n)
# overall: space complexity O(n)
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Find the Bug:
def __init__(self):
# space complexity:
self.stack = []
self.size = 0
self.minVal = float('inf')
def push(self, val: int):
# time complexity:
if self.size < len(self.stack)
self.stack[self.size] = val
else:
self.stack.append(val)
# increases logical size
self.size += 1
if val < self.minVal:
self.minVal = val
def pop(self):
# time complexity:
if self.size == 0:
raise IndexError("Pop from empty stack")
# decreases logical size
# INCORRECT: does not update minVal when the popped value is the minVal
# Stack implementation does not track previous minVal for updates
self.size -= 1
def top(self):
# time complexity:
if self.size == 0:
raise IndexError("Stack is empty")
return self.stack[self.size - 1]
def getMin(self):
# time complexity:
return self.minVal
# overall: time complexity
# overall: time complexity
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Solution 1: Main Stack + Min Tracker
def __init__(self):
# using a minTracker stack, we track the min value at each
# level of the main stack. Ensures when we pop a top value
# we can instantly know the min value at that point
# space complexity:
self.mainStack = []
self.minTracker = []
self.mainSize = 0
def push(self, val: int):
# logical size vs physical size
if self.mainSize < len(self.mainStack):
self.mainStack[self.mainSize] = val
else:
self.mainStack.append(val)
# logical size vs physical size
if self.mainSize < len(self.minTracker)
# compares new value with previous level of minTracker
self.minTracker[self.mainSize] = min(val, self.minTracker[self.mainSize - 1] if self.mainSize > 0 else val)
else:
self.minTracker.append(min(val, self.minTracker[self.mainSize - 1] if self.mainSize > 0 else val))
# increases logical size
self.mainSize += 1
def pop(self):
# time complexity:
if self.mainSize == 0:
raise IndexError("Pop from empty stack")
self.mainSize -= 1
def top(self):
# time complexity:
if self.mainSize == 0:
raise IndexError("Stack is empty")
return self.mainStack[self.mainSize - 1]
def getMin(self):
# time complexity:
if self.mainSize == 0:
raise IndexError("Stack is empty")
return self.minTracker[self.mainSize - 1]
# overall: time complexity
# overall: time complexity
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Solution 2: Tuple Stack
def __init__(self):
# using of having a separate minTracker stack, we track the min value
# at each level of the main stack using tuples (val, min).
# Ensures when we pop a top value we can instantly know
# the min value at that level of the stack
# space complexity:
self.stack = []
self.size = 0
def push(self, val: int):
# compares val with previous level tuple minValue
# sets new (val, minValue) to lower value
currMin = min(val, self.stack[self.size - 1][1] if self.size > 0 else val)
# logical size vs physical size
if self.size < len(self.stack):
self.stack[self.size] = (val, currMin)
else:
self.stack.append((val, currMin))
# increases logical size
self.size += 1
def pop(self):
# time complexity:
if self.size == 0:
raise IndexError("Pop from empty stack")
self.size -= 1
def top(self):
# time complexity:
if self.size == 0:
raise IndexError("Stack is empty")
return self.stack[self.size - 1][0]
def getMin(self):
# time complexity:
if self.size == 0:
raise IndexError("Stack is empty")
return self.stack[self.size - 1][1]
# overall: time complexity
# overall: time complexity
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
150. Evaluate Reverse Polish Notation - Medium
Topics: Array, Math, Design
Intro
You are given an array of strings tokens that represents an arithmetic expression in a Reverse Polish Notation. Evaluate the expression. Return an integer that represents the value of the expression. Note that: The valid operators are '+', '-', '*', and '/'. Each operand may be an integer or another expression. The division between two integers always truncates toward zero. There will not be any division by zero. The input represents a valid arithmetic expression in a reverse polish notation. The answer and all the intermediate calculations can be represented in a 32-bit integer.
Input | Output |
---|---|
["2","1","+","3","*"] | 9 |
["4","13","5","/","+"] | 6 |
["10","6","9","3","+","-11","","/","","17","+","5","+"] | 22 |
Constraints:
1 ≤ tokens.length ≤ 104
tokens[i] is either an operator: "+", "-", "*", or "/", or an integer in the range [-200, 200].
Abstract
We're designing abstract syntax tree that when execute, will execute the given operations in reverse polish notation.
Space & Time Complexity
Solution | Time Complexity | Space Complexity | Time Remark | Space Remark |
---|---|---|---|---|
Brute Force:
def evalRPN(self, tokens: List[str]) -> int:
stack = []
for token in tokens:
if token not in "+-*/":
# Push operand onto stack
stack.append(int(token))
else:
# Pop two operands
b = stack.pop()
a = stack.pop()
# Perform operation and push result
if token == "+":
stack.append(a + b)
elif token == "-":
stack.append(a - b)
elif token == "*":
stack.append(a * b)
elif token == "/":
stack.append(int(a / b)) # Truncate towards 0
return stack.pop()
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Find the Bug:
def evalRPN(self, tokens: List[str]) -> int:
stack = []
for token in tokens:
if token not in "+-*/":
stack.append(int(token))
else:
# INCORRECT order of popping operands
a = stack.pop() # a should be second operand
b = stack.pop() # b should be the first operand
if token == "+":
stack.append(a + b) # Incorrect operand order
elif token == "-":
stack.append(a - b) # Incorrect operand order
elif token == "*":
stack.append(a * b) # Correct, since order doesn't matter
elif token == "/":
stack.append(int(a / b)) # Incorrect operand order
return stack.pop()
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Solution 1:
def evalRPN(self, tokens: List[str]) -> int:
stack = []
for token in tokens:
if token not in "+-*/":
stack.append(int(token))
else:
b = stack.pop()
a = stack.pop()
match token:
case "+":
stack.append(a + b)
case "-":
stack.append(a - b)
case "*":
stack.append(a * b)
case "/":
stack.append(int(a / b)) # Explicit truncation towards zero
return stack[-1]
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Solution 2:
from operator import add, sub, mul, floordiv
def evalRPN(self, tokens: List[str]) -> int:
stack = []
operations = {"+": add, "-": sub, "*": mul, "/": lambda a, b: int(a / b)}
for token in tokens:
if token not in operations:
stack.append(int(token))
else:
b = stack.pop()
a = stack.pop()
stack.append(operations[token](a, b))
return stack[-1]
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
22. Generate Parentheses - Medium
Topics: String, Dynamic Programming, Backtracking
Intro
Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
Input | Output |
---|---|
1 | ["()"] |
3 | ["((()))","(()())","(())()","()(())","()()()"] |
Constraints:
1 ≤ n ≤ 8
Abstract
Given a number, generate all possible combinations of parentheses.
Space & Time Complexity
Solution | Time Complexity | Space Complexity | Time Remark | Space Remark |
---|---|---|---|---|
Brute Force:
def generateParenthesis(self, n: int) -> List[str]:
# generates all possible combinations of n pairs of parentheses
def generate_combinations(current, length, combinations):
# base case: if
if length == 2 * n:
combinations.append(current)
return
# recursively add '(' and ')' to the current string to generate all possible combinations
generate_combinations(current + "(", length + 1, combinations)
generate_combinations(current + ")", length + 1, combinations)
# checks if given parentheses string is valid
def isValid(s: str) -> bool:
# counter to track balance of parentheses
balance = 0
# iterate through parentheses string
for char in s:
# increment balance
if char == '(':
balance += 1
# decrement balance
else:
balance -= 1
# closing parenthesis has no matching
if balance < 0:
return False
# validate all parentheses have match
return balance == 0
# grab all possible combinations
combinations = []
generate_combinations("", 0, combinations)
result = []
# generate and validate all combinations
for combo in combinations:
if isValid(combo):
result.append(combo)
# overall: time complexity
# overall: space complexity
return result
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Find the Bug:
def generateParenthesis(self, n: int) -> List[str]:
# Initialize a stack to simulate depth-first search (DFS)
# (currString, openParenCount, closedParenCount)
stack = [("", 0, 0)]
result = []
# while stack is non-empty
while stack:
#
current, openCount, closeCount = stack.pop()
# if we have a valid combination of n '(' and n ')' add to list
if openCount == n and closeCount == n:
result.append(current)
continue
# INCORRECT: condition allows ')' to be added even if they exceed the number of '('
# should be `closeCount < openCount`
if closeCount < n:
stack.append((current + ")", openCount, closeCount + 1))
if openCount < n:
stack.append((current + "(", openCount + 1, closeCount))
# overall: time complexity
# overall: space complexity
return result
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Solution 1: Iterative Stack (State Tracking)
def generateParenthesis(self, n: int) -> List[str]:
# stack initial state
stack = [("", 0, 0)]
# store valid parentheses
result = []
#
while stack:
# grab the current state of the stack
currentStr, openCount, closeCount = stack.pop()
# base case: if we have used all open and close parentheses
if openCount == n and closeCount == n:
# add valid combination
result.append(currentStr)
continue
# push new state with '(' added
if openCount < n:
stack.append((currentStr + "(", openCount + 1, closeCount))
# push new state with '(' added
if closeCount < openCount:
stack.append((currentStr + ")", openCount, closeCount + 1))
# overall: time complexity
# overall: space complexity
return result
("") (0, 0)
├── ("(", 1, 0)
│ ├── ("((", 2, 0)
│ │ ├── ("(((", 3, 0)
│ │ │ ├── ("((()", 3, 1)
│ │ │ │ ├── ("((())", 3, 2)
│ │ │ │ │ └── ("((()))", 3, 3) <-- Add to Result
│ │ │ └── ("(()", 2, 1)
│ │ │ ├── ("(()(", 3, 1)
│ │ │ │ ├── ("(()()", 3, 2)
│ │ │ │ │ └── ("(()())", 3, 3) <-- Add to Result
│ │ │ └── ("(())", 2, 2)
│ │ │ ├── ("(())(", 3, 2)
│ │ │ │ └── ("(())()", 3, 3) <-- Add to Result
│ │ └── ("()", 1, 1)
│ │ ├── ("()(", 2, 1)
│ │ │ ├── ("()((", 3, 1)
│ │ │ │ ├── ("()(()", 3, 2)
│ │ │ │ │ └── ("()(())", 3, 3) <-- Add to Result
│ │ │ └── ("()()", 2, 2)
│ │ │ ├── ("()()(", 3, 2)
│ │ │ │ └── ("()()()", 3, 3) <-- Add to Result
Note:
State Driven Exploration:
Each state (currentStr, openCount, closeCount) is unique and represents a specific configuration of valid or potentially parentheses at that point
Constraints:
The constraints in the algorithm ensure valid parentheses combinations by:
-
openCount ≤ n -> We can’t add more open parentheses than allowed by n.
-
closeCount ≤ openCount -> We can’t close more parentheses than have been opened.
Linear Growth:
Single Entry and Exit per state. Each state is added to the stack. Since stack processes each state exactly once, the algorithm has linear growth in the number of valid states it generates.
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Note: the stack is used for state tracking (tracking open and cloes counts), not for memoization or subproblem reuse.
Solution 2: BackTracking (String)
def generateParenthesis(self, n: int) -> List[str]:
res = []
# Backtracking
def helper(current: List[str], num_open: int, num_closed: int):
# Base case: If the length of the current combination is 2 * n, it's complete
if len(current) == n * 2:
# convert list to string and add to res
res.append("".join(current))
return
# Recursive case 1: Add '(' if the number of '(' used is less than n
if num_open < n:
current.append('(')
helper(current, num_open + 1, num_closed)
# Backtrack by removing the last added '('
current.pop()
# Recursive case 2: Add ')' if the number of ')' used is less than the number of '('
if num_closed < num_open:
current.append(')')
helper(current, num_open, num_closed + 1)
# Backtrack by removing the last added ')'
current.pop()
# Start Backtracking process with an empty list and counts at 0
helper([], 0, 0)
# overall: time complexity
# overall: space complexity
return res
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Solution 3: BackTracking (Mutable List)
def generateParenthesis(self, n: int) -> List[str]:
res = []
# Backtracking
def backtrack(current, openCount, closeCount):
# Base case: if we have used all open and close parentheses
if openCount == n and closeCount == n:
# add valid combination to res
res.append(current)
return
# Recursive case 1: Add '(' if the number of '(' used is less than n
if openCount < n:
# Backtrack by adding '(' to curr string, and incrementing openCount by 1
# recursive call explores all combinations starting from this new state
backtrack(current + "(", openCount + 1, closeCount)
# recursive case: Add ')' if the number of ')' used is less than the number of '('
if closeCount < openCount:
# Backtrack by adding ')' to the curr string, and incrementing closeCount by 1
# recursive call explores all combinations starting from this new state
backtrack(current + ")", openCount, closeCount + 1)
# starts recursion with an empty string and zero counts
# backtracking process builds strings by choosing '(' or ')' at each step
# and checking a possible valid paths through the recursion tree
backtrack("", 0, 0)
# overall: time complexity
# overall: space complexity
return res
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Solution 4: Dynamic Programming
def generateParenthesis(self, n: int) -> List[str]:
# Initialize a list to store DP results
dp = [[] for _ in range(n + 1)]
# Base case: valid combination for n = 0
dp[0] = [""]
# dp for 1 to n
# time complexity: iterate over list of n length O(n)
for i in range(1, n + 1):
# Partition parentheses into two parts:
# dp[j]: iterates from 0 -> i - 1
# dp[i - 1 - j]: iterates from i - 1 -> 0
# grabbing dp 0 + dp (i - 1) + parenthesis in (f"({left}){right}")
# allows us to generate a valid combination for dp i
for j in range(i):
# iterate over combinations from 0 parentheses pair, to i parentheses pairs
for left in dp[j]:
# iterate over combinations from (i - 1) parentheses pairs dp[0]
for right in dp[i - 1 - j]:
# Add new permutation to list
# Since we are starting from a valid base case, if our formula builds a valid parentheses combination
# any combination of parentheses will guarantee a new valid permutation
# ({left}){right} or {left}({right}) are both valid formulas
dp[i].append(f"({left}){right}")
# overall: time complexity
# overall: space complexity
return dp[n]
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
739. Daily Temperatures - Medium
Topics: Array, Stack, Monotonic Stack
Intro
Given an array of integers temperatures represents the daily temperatures, return an array answer such that answer[i] is the number of days you have to wait after the ith day to get a warmer temperature. If there is no future day for which this is possible, keep answer[i] == 0 instead.
Input | Output |
---|---|
[30,40,50,60] | [1,1,1,0] |
[30,60,90] | [1,1,0] |
[73,74,75,71,69,72,76,73] | [1,1,4,2,1,1,0,0] |
Constraints:
1 ≤ temperatures.length ≤ 105
30 ≤ temperatures[i] ≤ 100
Abstract
Space & Time Complexity
Solution | Time Complexity | Space Complexity | Time Remark | Space Remark |
---|---|---|---|---|
Brute Force: Stack
def dailyTemperatures(self, temperatures: List[int]) -> List[int]:
# space complexity:
n = len(temperatures)
res = [0] * n
# time complexity: iterate over list of n length O(n)
for i in range(n):
# time complexity: iterate over list of n length per outer iteration O(n^2)
for j in range(i + 1, n):
# found higher temperature, calculate difference
if temperatures[j] > temperatures[i]:
res[i] = j - i
break # Stop once the first warmer day is found
# overall: time complexity O(n^2)
# overall: space complexity O(1)
return res
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Find the Bug: Stack
def dailyTemperatures(self, temperatures: List[int]) -> List[int]:
# space complexity:
st = []
res = [0] * len(temperatures)
# time complexity:
for i in range(len(temperatures)):
#
while st and temperatures[i] > temperatures[st[-1]]:
idx = st.pop()
res[idx] = i - idx # Correctly compute days difference
# INCORRECT: current day i is never pushed
return res
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Solution 1: Monotonic Stack
def dailyTemperatures(self, temperatures: List[int]) -> List[int]:
# space complexity:
n = len(temperatures)
res = [0] * n
stack = [] # Indices of temperatures
# time complexity:
for i in range(n):
# compares curr temp with top of stack
while stack and temperatures[i] > temperatures[stack[-1]]:
idx = stack.pop()
# Days until a warmer temperature
res[idx] = i - idx
# Push current index
stack.append(i)
return res
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Extra Solution 1: Reverse Traversal
def dailyTemperatures(self, temperatures: List[int]) -> List[int]:
st = []
res = [0] * len(temperatures)
for i in range(len(temperatures)):
while st and temperatures[i] > temperatures[st[-1]]:
idx = st.pop()
res[idx] = i - idx
st.append(i)
return res
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Extra Solution 2: Two-Pointer Sliding Window
def dailyTemperatures(self, temperatures: List[int]) -> List[int]:
n = len(temperatures)
res = [0] * n
hottest_day = n - 1 # Track the hottest day from the end of the list
for i in range(n - 2, -1, -1): # Start from the second last element
if temperatures[i] >= temperatures[hottest_day]:
hottest_day = i # Update the hottest day
else:
j = i + 1
while temperatures[j] <= temperatures[i]:
j += res[j] # Jump to the next warmer day
res[i] = j - i # Calculate days to next warmer temperature
return res
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
853. Car Fleet - Medium
Topics: Array, Stack, Sorting, Monotonic Stack
Intro
There are n cars at given miles away from the starting mile 0, traveling to reach the mile target. You are given two integer array position and speed, both of length n, where position[i] is the starting mile of the ith car and speed[i] is the speed of the ith car in miles per hour. A car cannot pass another car, but it can catch up and then travel next to it at the speed of the slower car. A car fleet is a car or cars driving next to each other. The speed of the car fleet is the minimum speed of any car in the fleet. If a car catches up to a car fleet at the mile target, it will still be considered as part of the car fleet. Return the number of car fleets that will arrive at the destination.
Input | Output |
---|---|
target = 10, position = [3], speed = [3] | 1 |
target = 100, position = [0,2,4], speed = [4,2,1] | 1 |
target = 12, position = [10,8,0,5,3], speed = [2,4,1,1,3] | 3 |
Constraints:
1 ≤ n ≤ 105
0 < target ≤ 1010
0 ≤ position[i] < target
All of values of position are unique
0 < speed[i] ≤ 106
Abstract
Space & Time Complexity
Solution | Time Complexity | Space Complexity | Time Remark | Space Remark |
---|---|---|---|---|
Brute Force: Stack
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Find the Bug: Stack
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Solution Semi Optimal 1: Stack
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Solution Optimal 2: Stack
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Solution 1: Stack
def carFleet(self, target: int, position: List[int], speed: List[int]) -> int:
# Sort cars by position in descending order
cars = sorted(zip(position, speed), reverse=True)
# Stack to store the time each fleet takes to reach the target
stack = []
# time complexity
for pos, spd in cars:
time_to_target = (target - pos) / spd # Time for current car to reach target
# Push the current car's time only if it doesn't merge with the fleet at the top
if not stack or time_to_target > stack[-1]:
stack.append(time_to_target)
# overall
# overall
return len(stack)
Extra Solution 1: Greedy
def carFleet(self, target: int, position: List[int], speed: List[int]) -> int:
ans = prev = 0
for pp, ss in sorted(zip(position, speed), reverse=True):
tt = (target - pp)/ss # time to arrive at target
if prev < tt:
ans += 1
prev = tt
return ans
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
84. Largest Rectangle in Histogram - Hard
Topics: Array, Stack, Monotonic Stack
Intro
Given an array of integers heights representing the histogram's bar height where the width of each bar is 1, return the area of the largest rectangle in the histogram.
Input | Output |
---|---|
[2,4] | 4 |
[2,1,5,6,2,3] | 10 |
Constraints:
1 ≤ heights.length ≤ 105
0 ≤ heights[i] ≤ 104
Abstract
Space & Time Complexity
Solution | Time Complexity | Space Complexity | Time Remark | Space Remark |
---|---|---|---|---|
Brute Force: Stack
def largestRectangleArea(self, heights: List[int]) -> int:
n = len(heights)
max_area = 0
for i in range(n):
min_height = heights[i]
for j in range(i, n):
min_height = min(min_height, heights[j])
max_area = max(max_area, min_height * (j - i + 1))
return max_area
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Find the Bug: Stack
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Solution 1: Optimal Stack
def largestRectangleArea(self, heights: List[int]) -> int:
stack = []
max_area = 0
for i, h in enumerate(heights + [0]): # Add a sentinel height of 0
while stack and heights[stack[-1]] > h:
height = heights[stack.pop()]
width = i if not stack else i - stack[-1] - 1
max_area = max(max_area, height * width)
stack.append(i)
return max_area
Extra Optimal Solution 1: Divide and Conquer
def calculate_area(start, end):
if start > end:
return 0
min_index = start
for i in range(start, end + 1):
if heights[i] < heights[min_index]:
min_index = i
left_area = calculate_area(start, min_index - 1)
right_area = calculate_area(min_index + 1, end)
current_area = heights[min_index] * (end - start + 1)
return max(left_area, right_area, current_area)
return calculate_area(0, len(heights) - 1)
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
Extra Optimal Solution 2: Non Stack
class SegmentTree:
def __init__(self, heights):
self.n = len(heights)
self.tree = [0] * (4 * self.n)
self.build(heights, 0, 0, self.n - 1)
def build(self, heights, node, start, end):
if start == end: # Leaf node
self.tree[node] = start
else:
mid = (start + end) // 2
left = 2 * node + 1
right = 2 * node + 2
self.build(heights, left, start, mid)
self.build(heights, right, mid + 1, end)
# Combine the results of the children
if heights[self.tree[left]] < heights[self.tree[right]]:
self.tree[node] = self.tree[left]
else:
self.tree[node] = self.tree[right]
def query(self, heights, node, start, end, l, r):
if start > r or end < l: # Range outside query bounds
return -1
if l <= start and end <= r: # Range completely within query bounds
return self.tree[node]
mid = (start + end) // 2
left = self.query(heights, 2 * node + 1, start, mid, l, r)
right = self.query(heights, 2 * node + 2, mid + 1, end, l, r)
if left == -1: # If left part is out of range
return right
if right == -1: # If right part is out of range
return left
return left if heights[left] < heights[right] else right
def largestRectangleArea(self, heights: List[int]) -> int:
def calculate_area(start, end):
if start > end:
return 0
min_index = tree.query(heights, 0, 0, len(heights) - 1, start, end)
left_area = calculate_area(start, min_index - 1)
right_area = calculate_area(min_index + 1, end)
current_area = heights[min_index] * (end - start + 1)
return max(left_area, right_area, current_area)
tree = SegmentTree(heights)
return calculate_area(0, len(heights) - 1)
Aspect | Time Complexity | Space Complexity | Time Remarks | Space Remarks |
---|---|---|---|---|
402. Remove K Digits - Medium
Topics: String, Stack, Greedy, Monotonic Stack
Intro
Given string num representing a non-negative integer num, and an integer k, return the smallest possible integer after removing k digits from num.
Input | Output |
---|---|
num = "10", k = 2 | "0" |
num = "10200", k = 1 | "200" |
num = "1432219", k = 3 | "1219" |
Constraints:
1 ≤ k ≤ num.length ≤ 105
num consists of only digits
num does not have any leading zeros except for 0 itself
Abstract
Remove k digits in a way so that resulting integer is as large as possible.
Solution 1: Optimal Stack
def removeKdigits(self, num: str, k: int) -> str:
stack = [] # Stack to hold the digits of the resulting number
for digit in num:
# Remove digits from the stack if the current digit is smaller
# and we still need to remove more digits (k > 0)
while stack and k > 0 and stack[-1] > digit:
stack.pop()
k -= 1
stack.append(digit)
# If there are still digits to remove, remove from the end of the stack
stack = stack[:-k] if k else stack
# Join the stack into a number and remove leading zeros
result = ''.join(stack).lstrip('0')
# Return "0" if the result is empty
return result or "0"